
Fast Fourier Transform (FFT)

Problem: we need an efficient way to compute the DFT. The answer is the FFT.
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We can always break the summation into two summations: one on even indices (n=0,2,4,…)
and one on odd indeces (n=1,3,5,…), as
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Let us assume that the total number of points N is even, ie N/2 is an integer. Then we can write
the DFT as
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The two summations are two distinct DFT’s, as we can see below
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for k=0,…N-1,     where
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The problem is that in the expression

the N-point DFT  and the N/2 point DFT’s have different lengths, since we define them as
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For example if N=4 we need to compute
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We use the periodicity of the DFT, and relate the N-point DFT with the two N/2-point DFT’s as
follows
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General Structure of the FFT (take, say, N=8):
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Same for the 4-DFT:
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Finally the 2-DFT’s have a simple expansion:

X x x
X x x

2

2

0 0 1
1 0 1

( ) ( ) ( )
( ) ( ) ( ),

= +
= −

x( )1 X ( )1

X ( )0
2-DFT

x( )0

since

∑
=

+==
1

0
222 )1()0()()(

n

kkn xwxwnxkX

with ( )kkjk ew 12 −== − π



Put everything together:

x( )0

x( )4

x( )2

x( )6

x( )1

x( )5

x( )3

x( )7

)0(X

N/2 mult/stage

× stagesN2log =
N

N
2 2log

)1(X

)2(X

)3(X

)4(X

)5(X

)6(X

)7(X

0
4w

1
4w

0
4w

1
4w

0
8w

1
8w

2
8w

3
8w

N adds/stage

mult

NN 2log adds



We say that, for a data set of length              ,
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for some constants a,b.

On the other hand, for the same data of length N ,
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This is a big difference in the total number of computations, as shown in this graph:
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